
From: Peralta, Rene (Fed)
To:
Subject: Fw: API for PQC algorithms
Date: Friday, October 28, 2016 11:30:58 AM

From: pqc-forum-bounces@nist.gov <pqc-forum-bounces@nist.gov> on behalf of Moody, Dustin
(Fed) <dustin.moody@nist.gov>
Sent: Friday, October 28, 2016 11:29 AM
To: pqc-forum
Subject: [Pqc-forum] API for PQC algorithms
We wanted to provide the updated API we are planning on using for PQC algorithms (signatures,
encryption, KEMs).
Let us know of any suggestions. Thanks,
Dustin Moody
NIST
PQC - API notes
Most of the API information is derived from the eBATS: ECRYPT Benchmarking of
Asymmetric Systems (https://bench.cr.yp.to/ebats.html). This has been done to facilitate
benchmarking algorithm performance. Please look at the eBATS page for more information
on how to submit an algorithm for performance benchmarking. There are two sets of API
calls listed for each primitive. The first set is the API call directly from the eBATS page, or
something very similar for the Key Encapsulation Mechanism section. The second set of
calls is for testing purposes. The calls extend the eBATS calls for functions that utilize
randomness by providing a pointer to specify a randomness string. This will allow
algorithms that utilize randomness to be able to provide reproducible results. For example,
this will allow testing of KAT files and other sample values.
Public-key Signatures
See https://bench.cr.yp.to/call-sign.html for more information on Public-key
Signature API and performance testing.
The first thing to do is to create a file called api.h. This file contains the following four lines
(with the sizes set to the appropriate values):
#define CRYPTO_SECRETKEYBYTES 256
#define CRYPTO_PUBLICKEYBYTES 85
#define CRYPTO_BYTES 128
#define CRYPTO_RANDOMBYTES 64
indicating that your software uses a 256-byte (2048-bit) secret key, an 85-byte (680-bit)
public key, at most 128 bytes of overhead in a signed message compared to the original
message, and 64 bytes of random input.
Then create a file called sign.c with the following function calls:
eBATS calls
Generates a keypair - pk is the public key and sk is the secret key.
int crypto_sign_keypair(
unsigned char *pk,
unsigned char *sk
)
Sign a message: sm is the signed message, m is the original message, and sk is the secret
key.
int crypto_sign(

(b) (6)



unsigned char *sm, unsigned long long *smlen,
const unsigned char *m, unsigned long long mlen,
const unsigned char *sk
)
Verify a message signature: m is the original message, sm is the signed message, pk is the
public key.
int crypto_sign_open(
const unsigned char *m, unsigned long long *mlen,
const unsigned char *sm, unsigned long long smlen,
const unsigned char *pk
)
KAT calls
int crypto_sign_keypair_KAT(
unsigned char *pk,
unsigned char *sk,
const unsigned char *randomness
)
int crypto_sign_KAT(
unsigned char *sm, unsigned long long *smlen,
const unsigned char *m, unsigned long long mlen,
const unsigned char *sk,
const unsigned char *randomness
)
Public-key Encryption
See https://bench.cr.yp.to/call-encrypt.html for more information on Public-key
Encryption API and performance testing.
The first thing to do is to create a file called api.h. This file contains the following four lines
(with the sizes set to the appropriate values):
#define CRYPTO_SECRETKEYBYTES 256
#define CRYPTO_PUBLICKEYBYTES 64
#define CRYPTO_BYTES 48
#define CRYPTO_RANDOMBYTES 64
indicating that your software uses a 256-byte (2048-bit) secret key, a 64-byte (512-bit)
public key, at most 48 bytes of overhead in an encrypted message compared to the original
message, and 64 bytes of random input.
Then create a file called encrypt.c with the following function calls:
eBATS calls
Generates a keypair - pk is the public key and sk is the secret key.
int crypto_encrypt_keypair(
unsigned char *pk,
unsigned char *sk
)
Encrypt a plaintext: c is the ciphertext, m is the plaintext, and pk is the public key.
int crypto_encrypt(
unsigned char *c, unsigned long long *clen,
const unsigned char *m, unsigned long long mlen,
const unsigned char *pk
)
Decrypt a ciphertext: m is the plaintext, c is the ciphertext, and sk is the secret key.
int crypto_encrypt_open(
unsigned char *m, unsigned long long *mlen,
const unsigned char *c, unsigned long long clen,
const unsigned char *sk
)
KAT calls
int crypto_encrypt_keypair_KAT(



unsigned char *pk,
unsigned char *sk,
const unsigned char *randomness
)
int crypto_encrypt_KAT(
unsigned char *c, unsigned long long *clen,
const unsigned char *m, unsigned long long mlen,
const unsigned char *pk,
const unsigned char *randomness
)
Key Encapsulation Mechanism (KEM)
The calls in the eBATS specification do not meet the calls specified in the call for
algorithms. However, attempts were made to match the specifications for the other
algorithms.
The first thing to do is to create a file called api.h. This file contains the following four lines
(with the sizes set to the appropriate values):
#define CRYPTO_SECRETKEYBYTES 192
#define CRYPTO_PUBLICKEYBYTES 64
#define CRYPTO_BYTES 64
#define CRYPTO_CIPHERTEXTBYTES 128
#define CRYPTO_RANDOMBYTES 64
indicating that your software uses a 192-byte (1536-bit) secret key, a 64-byte (512-bit)
public key, a 64-byte (512-bit) shared secret, at most a 128-byte (1024-bit) ciphertext, and
64 bytes of random input.
Then create a file called kem.c with the following function calls:
eBATS-like calls
Generates a keypair - pk is the public key and sk is the secret key.
int crypto_kem_keygenerate(
unsigned char *pk,
unsigned char *sk
)
Encapsulate - pk is the public key, ct is a key encapsulation message (ciphertext), ss is the
shared secret.
int crypto_kem_encapsulate(
const unsigned char *pk,
unsigned char *ct,
unsigned char *ss
)
Decapsulate - ct is a key encapsulation message (ciphertext), sk is the private key, ss is the
shared secret
int crypto_kem_decapsulate(
const unsigned char *ct,
const unsigned char *sk,
unsigned char *ss
)
KAT calls
int crypto_kem_keygenerate(
unsigned char *pk,
unsigned char *sk,
const unsigned char *randomness
)
int crypto_kem_encapsulate(
const unsigned char *pk,
unsigned char *ct,
unsigned char *ss,
const unsigned char *randomness
)






